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Abstract
We suggest a better mathematical method, fractional calculus, for studying the behavior of the
atom–field interaction in photonic crystals. By studying the spontaneous emission of an atom in
a photonic crystal with a one-band isotropic model, we found that the long-time inducing
memory of the spontaneous emission is a fractional phenomenon. This behavior could be well
described by fractional calculus. The results show no steady photon–atom bound state for the
atomic resonant transition frequency lying in the proximity of the allowed band edge which was
encountered in a previous study (Woldeyohannes and John 2003 J. Opt. B: Quantum Semiclass.
Opt. 5 R43). The correctness of this result is validated by the ‘cut-off smoothing’ density of
photon states (DOS) with fractional calculus. By obtaining a rigorous solution without the
multiple-valued problem for the system, we show that the method of fractional calculus has a
logically concise property.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The performance of photonic devices in various fields is greatly
limited by the spontaneous emission rate. In light-emitting
diodes and lasers, for example, spontaneous emission that
is not extracted from the devices will contribute to loss and
noise. Inhibiting undesirable spontaneous light emission and
redistributing the energy into useful forms becomes important
in these fields [1–5]. It has been demonstrated theoretically and
experimentally [6, 7] that photonic bandgap (PBG) materials
could be effectively used to inhibit spontaneous emission. Near
a photonic band edge, the photon density of state (DOS), which
determines the rate of spontaneous emission, is significantly
different from that of free space. Singularity [8] of the
DOS near the PBG leads to the strong atom–field interaction
and formation of photon–atom bound states [9, 10], where
the spontaneous emission rate is inhibited. The Markov
approximation [11] of spontaneous emission in free space is
no longer valid in this near-PBG region, where the atomic

decay becomes non-exponential and the emission spectrum
becomes non-Lorentzian. By using two-dimensional (2D)
photonic crystals, Fujita et al [12] successfully inhibited and
redistributed the spontaneous light emission by a factor of 5 as
a result of the 2D photonic bandgap effect.

The experimental data clearly indicate that the sponta-
neous emission rate has non-exponential decaying behavior
when the emission peak is located near the band edges (the
cases of lattice constant a = 480 and 390 nm in figure 3
of [13]). This non-Markov behavior of the PBG reservoir
had been studied by John et al [9, 10, 14] using the Laplace
transform method to solve the time evolution integral equation
of the excited probability amplitude of an atom in a high-Q
microcavity with singular DOS. They showed that the time
evolution of the excited-state population exhibits decay and
oscillatory behavior before reaching a nonzero steady-state
value due to photon localization [9, 10]. This bound dressed
state leads to a fractionalized steady-state atomic population in
the excited state. This behavior is observed as the prolonged
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lifetime effect in [12]. However, John et al [14, 15] predicted
that the unphysical bound state is present even when the
resonant atomic frequency lies outside the band gap. This is
inconsistent with the experimental result that the prolonged
lifetime effect will disappear when the emission peak lies
outside the PBG region. This inconsistency may be caused
by the multiple-valued problem encountered in [14] and by the
singular DOS which is appropriate for a high-Q microcavity
but not suitable for a PBG reservoir with more smooth DOS
near the band edge.

The time evolution of the probability amplitude of the
excited level of an atom is related to the delay Green function
or memory kernel G(t − t ′) [8, 11], which is a measure of the
reservoir memory on the excited atom. The resultant Green
function depends very strongly on the photon DOS of the
relevant photon reservoir. The DOS near the band edge in
the isotropic one-band model has the form of ρ(ω) ∝ (ω −
ωc)

−1/2, where the square-root singularity is a characteristic of
a one-dimensional phase space. The corresponding memory
kernel [8] has the same form of a square-root singularity:
G(t − t ′) ∝ (t − t ′)−1/2. Such a square-root singularity
means that the resultant memory kernel possesses the long-
time memory effect. That is, there is no timescale to separate
the microscopic levels from the macroscopic levels.

Recently, long-time memory phenomena have also
attracted a great attention in statistical physics. Such a long-
time memory is intrinsic to all timescales (the corresponding
memory function has no characteristic scales) of the phase
space of a system, provided that the number of divisions
generating a fractal set tends to infinity. It has been shown
that the relationship between the fractal set and the fractional
integral reduces the generalized Langevin, Kramer–Moyal,
Fokker–Planck–Kolmogorov equations to their fractional
forms [16–18]. The random nature of microscopic dynamics
can transmit to the macroscopic level. The correct description
of the macroscopic evolution of such systems has to be
expressed in terms of fractional calculus [16–18]. In
fact, fractional calculus is a macroscopic manifestation of
randomness. Fractional calculus is a useful tool for a diffusion
process generated by a fluctuation with no timescale at the
macroscopic level, and such a diffusion process can be
described by a fractional Langevin equation [19, 20].

In this paper, we applied fractional calculus to study the
dynamics of the spontaneous emission of an atom in a photonic
crystal. We derived a fractional Langevin equation for this
system and solved it to obtain the excited-state probability
density. The solution produced by the fractional (inverse)
Laplace transform [21–23] is expressed in terms of the square
complex variables. There is no multiple-valued problem like
that encountered in the previous studies [14, 15]. This rigorous
mathematical method shows that no steady photon–atom
bound state exists for the atomic resonant transition frequency
lying in the allowed band. We verified the correctness
of this by using the ‘cut-off smoothing’ DOS [24] with
fractional calculus for the atomic transition frequency lying
in the proximity of the allowed band edge. The excited-state
probability of this result still shows decaying characteristics.
Fractional calculus gives the correct description of the behavior

for the system near the band edge either with or without the
‘cut-off smoothing’ DOS. It not only resolves the multiple-
valued problem but also avoids choice of the smoothing
parameter. Therefore, we suggest that the behavior of the
atom–field interaction in photonic crystals should be expressed
in terms of fractional calculus.

2. The dynamics of spontaneous emission

The system we investigate is a two-level atom coupled to the
radiation in a photonic crystal with a one-band isotropic model.
In the rotating-wave approximation, the total Hamiltonian for
the coupled atom-field system can be written as

H = h̄ω21σ22+
∑

�k
h̄ω�ka†

�k a�k + ih̄
∑

g�k(a
†
�kσ12 − σ21a�k) (1)

where σi j = |i〉〈 j | (i , j = 1, 2) are the atomic operators
for a two-level atom with excited state |2〉, ground state |1〉,
and resonant transition frequency ω21; a�k and a†

�k are the
annihilation and creation operators of the radiation field. ω�k
is the radiation frequency of mode �k in the reservoir, and the

atom–field coupling constant g�k = ω21d21
h̄ [ h̄

2ε0ω�k V ] 1
2 ê�k · ûd is

assumed to be independent of atomic position with the fixed
atomic dipole moment �d21 = d21ûd . V is the sample volume,
ê�k is the polarization unit vector of the reservoir mode �k, and
the Coulomb constant is ε0.

In the single photon sector, the wavefunction of the system
has the form

|ψ(t)〉 = A(t) e−iω21 t |2, {0}〉 +
∑

�k
B�k(t) e−iω�k t |1, {1�k}〉 (2)

with initial condition A(0) = 1 and B�k(0) = 0. Here A(t)
labels the probability amplitude for the atom in its excited state
|2〉 with an electromagnetic vacuum state and B�k(t) for the
atom in its ground state |1〉 with a single photon in mode �k
with frequency ω�k .

We obtained the equations of motion for the amplitudes
by projecting the time-dependent Schrödinger equation on the
one-photon sector of the Hilbert space as

d

dt
A(t) = −

∑
g�k B�k(t) e−i��k t (3)

d

dt
B�k(t) = g�k A(t) ei��k t (4)

with detuning frequency ��k = ω�k − ω21. By substituting
the time integration of equation (4) into equation (3), we
have the time evolving equation of the excited-state probability
amplitude

d

dt
A(t) = −

∫ t

0
G(t − τ )A(τ ) dτ (5)

with the memory kernel G(t − τ ) = ∑
�k g2

�k e−i��k (t−τ) =
β

3
2
∫
ρ(ω) e−i(ω−ωc)(t−τ) dω. We could observe from this

equation that the memory kernel is a measure of the reservoir’s
memory in its previous state. The system evolves according to
this equation.
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The object of our study, the dynamics of the spontaneous
emission, could be obtained by solving the time evolving
equation (5). Here we applied fractional calculus and fractional
Laplace transform to solve this equation, which was shown
to have the form of a fractional Langevin equation. We
adopted the isotropic one-band model to determine the memory
kernel in equation (5), which is given as G(t − τ ) =
β

3/2
1

(t−τ)1/2 e−i[π/4−�c(t−τ)] with t > τ in the long-time limit [8].
Here �c = ω21 − ωc is the detuning frequency of the
atomic resonance frequency ω21 from the band edge ωc and
β

3/2
1 = (ω

7/2
21 d2

21)/(12π3/2h̄ε0c3) is the coupling constant. By
substituting this memory kernel to equation (5) and making a
transformation A(t) = ei�ct C(t), we obtained

d

dt
C(t) + i�cC(t) = −β3/2

1 e−iπ/4
∫ t

0

C(τ )

(t − τ )1/2
dτ. (6)

Comparing this equation with the Riemann–Liouville frac-
tional differentiation operator [21–23]

dα

dtα
u(t) = 1

(−α)
∫ t

0
(t − τ )−α−1u(τ ) dτ, (7)

we observed that the term on the right-hand side could be
expressed as a fractional differentiation operator with order
α = −1/2. That is, the time evolution equation can be written
as

d

dt
C(t)+ i�cC(t) = −β3/2

1 e−iπ/4(1/2)
d−1/2

dt−1/2
C(t) (8)

with gamma function (x). This fractional differential
equation could be solved by manipulating the fractional
operator. Here we used the mathematical steps of applying the
integral operator (d−1/dt−1) and the fractional differentiation
operator d3/2/dt3/2 to obey the law of exponents for fractional
integrals (from Dirichlet’s formula) and the definition of the
fractional derivative [23]. The former step gave

C(t)−C(0)+ i�c
d−1

dt−1
C(t)+β3/2

1 e−iπ/4√π d−3/2

dt−3/2
C(t) = 0.

(9)
The latter step yielded the fractional form of the time evolving
equation

d3/2

dt3/2
C(t)+ i�c

d1/2

dt1/2
C(t) + √

πβ
3/2
1 e−iπ/4C(t)

= − 1

2
√
π

t−3/2, (10)

which is defined to be a fractional Langevin equation of
this atom–field interaction system. This equation describes
the evolution of an excited atom in a PBG material whose
time degree of freedom becomes stochastic [20] because
the occurrence of the temporal fractional operator in the
kinetic equation indicates a subordinated stochastic process.
The directional process is related to a stochastic process
with a stable probability distribution [25]. The parameter
characterizing the stable distribution coincides with the index
of the temporal fractional operator in the corresponding kinetic
equation.

We proceeded to solve the probability amplitude C(t) by
performing Laplace transform along with the formulae of the
fractional Laplace transform and inverse Laplace transform on
this fractional Langevin equation. First, the Laplace transform
of C(t) was thus given by

C̃(s) =
√

s

s3/2 + i�cs1/2 − (iβ)3/2
(11)

with β3/2 = β
3/2
1

√
π . Then we converted the variable s1/2 as

X and rewrote this equation as a sum of partial fractions

C̃(X) = a1

(X − X1)
+ a2

(X − X2)
+ a3

(X − X3)
. (12)

Here Xn are the roots of X3 + i�c X − (iβ)3/2 = 0 and an are
Xn-related coefficients. Xn and an are expressed as

X1 = β1/2(η+ + η−) eiπ/4, (13)

X2 = β1/2(η+ e−iπ/6 − η− eiπ/6) e−iπ/4, (14)

X3 = β1/2(η+ eiπ/6 − η− e−iπ/6) ei3π/4, (15)

with

η± =
[

1

2
± 1

2

√(
1 + 4

27

�3
c

β3

)]1/3

(16)

and

an = Xn

(Xn − X j )(Xn − Xm)

(n �= j �= m; n, j,m = 1, 2, 3). (17)

We can easily apply the inverse Laplace transform to this
form of partial fraction by using the formula for the inverse
fractional Laplace transform

L−1

{
1

s1/2 − a

}
= Et

(
−1

2
, a2

)
+ a ea2t . (18)

This procedure gave the probability amplitude

C(t) =
3∑

n=1

an

[
Et (− 1

2 , X2
n)+ Xn eX 2

n t
]
, (19)

where Et(α, a) = tα
∑∞

n=0
(at)n

(α+n+1) is the fractional
exponential function of variable t , order α, and constant
a. We have the dynamics of spontaneous emission for the
system by plotting the excited-state probability density P(t) =
|A(t)|2 = |C(t)|2, which has no multiple-valued problem.
This probability amplitude could be further expressed by the
error function as

A(t) = ei�ct
3∑

n=1

an

{
Xn + Yn

[
Erf

(√
X2

nt

)]}
eX 2

n t (20)

with Yn = √
X2

n (n = 1, 2, 3), which is the result of previous
studies [14, 15]. However, this expression is a multiple-valued
problem because the square roots of complex numbers X2

n will
introduce multiple-valued complex numbers to Yn . When the
numerical results are shown, every complex sheet of X2

n has

3
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Figure 1. Excited-state probability density, P(t) = |A(t)|2, as a
function of βt for various values of the atomic detuning frequency
(�c = ω21 − ωc),�c/β = −1 (inside the band gap),�c/β = 0 (at
the band edge) and �c/β = +1 (within the allowed band).

to be checked one by one to avoid errors. Obviously, our
results with fractional calculus are mathematically rigorous
and concise. Besides, our result in figure 1 shows that there
is no steady photon–atom bound state for the atomic transition
frequency lying in the proximity of allowed band edge, which
is very different from the results of previous studies [14, 15].

In order to fortify the accuracy of the result of no
unphysical photon–atom bound state in the allowed band,
we proceeded to apply the ‘cut-off smoothing’ density of
state (DOS) to investigation of the behavior of the system
near the allowed band edge [24]. As mentioned before, the
DOS in the isotropic single band model ρ(ω) ∝ (ω −
ωc)

−1/2θ(ω − ωc) with Heaviside step function θ has a weak
singularity for ω → ωc (near band edge). This singular
behavior is treated by the ‘cut-off smoothing DOS’ ρs(ω) ∝
limε→0

(ω−ωc)
1/2

(ω−ωc+ε) θ(ω − ωc) in realistic photonic crystals [24].
Here ε is the smoothing parameter and the superscript s
denotes the ‘cut-off smoothing DOS’ case. The excited-state
probability amplitude As(t) = ei�ct Cs(t) could be exactly
solved by performing a Laplace transform on the memory
kernel and time evolving equation (5). These procedures gave
the Laplace transform of probability amplitude C s(t) as

C̃s(s) = 1

s + i�c + G̃(s)
(21)

with G̃(s) = β3/2 e−iπ/4
√

s+√
iε

. This expression could be further

rewritten in terms of the roots, X s
n(n = 1, 2, 3), of z3+√

iεz2+
i�cz + (i

√
iε�c − β3/2i3/4) = 0 as

C̃s(s) =
√

s + √
iε

∏3
n=1(

√
s − X s

n)
=

3∑

n=1

as
n√

s − X s
n

, (22)

where

X s
1 = β1/2(ηs

+ + ηs
−) eiπ/4 −

√
iε

3
(23)

X s
2 = β1/2(ηs

+ e−iπ/6 − ηs
− eiπ/6) e−iπ/4 −

√
iε

3
(24)

X s
3 = β1/2(ηs

+ eiπ/6 − ηs
− e−iπ/6) ei3π/4 −

√
iε

3
(25)

Figure 2. Excited-state probability density, Ps(t) = |As(t)|2, for the
atomic detuning frequency�c/β = 0.3 with three values of
smoothing parameter ε = 0 (solid line), ε = 10−5 (dashed line),
ε = 10−3 (dot dashed line). The difference of these lines marked by a
circle is enlarged and shown in the inset.

with

ηs
± =

(
χ

2
±

√
ξ

2

)1/3

, χ = 1 − 2

3

�c
√
ε

β3/2
− 2

27

ε3/2

β3/2
,

ξ = χ2 + 4

27

(
�c − ε/3

β

)3

(26)
and

as
n = X s

n + √
iε(

X s
n − X s

j

) (
X s

n − X s
m

)

(n �= j �= m; n, j,m = 1, 2, 3). (27)

Here again we used fractional calculus (fractional inverse
Laplace transform) to obtain the excited-state probability
amplitude

As(t) = ei�ct
3∑

n=1

as
n

[
Et

(− 1
2 , (X

s
n)

2
) + X s

n e(X
s
n)

2t
]
. (28)

As we study how the system behaves near the allowed
band edge, we choose the detuning frequency �c = 0.3β
with smoothing parameters ε = 10−3, 10−5, 0, respectively, in
figure 2. It could be observed that the excited-state probability
density Ps(t) = |As(t)|2 has a small oscillatory behavior in the
short time regime but approaches zero in the long-time limit.
This means that there is really no steady photon–atom bound
state for the atomic transition frequency lying in the proximity
of the allowed band edge. Actually, we have plotted all the
behavior of the system inside the allowed band in figure 3. For
the atomic resonant transition frequency located deep inside
the allowed band (�c/β1 = 10) or very close to the band
edge (�c/β1 = 0.01), we found that these probabilities all
show decaying characteristics in the long-time limit. That is,
the photon located within the allowed band will not strongly
interact with atom so a photon–atom bound state will not
be formed. This result could be verified analytically from
the mathematical expression of the excited-state probability
amplitude As(t) = ei�ct

∑3
n=1 as

n[Et(− 1
2 , (X

s
n)

2)+X s
n e(X

s
n)

2t ].
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Figure 3. Excited-state probability density, P(t) = |A(t)|2, for
various values of atomic detuning frequency inside the allowed band
(�c/β > 0).

For the positive detuning (inside the allowed band �c > 0),
both terms in the square bracket will asymptotically cancel
each other out as time approaches infinity (t → ∞). We get the
correct depiction of the dynamics of spontaneous emission in
a PBG reservoir through fractional calculus, which is proposed
as a better mathematical method for studying the behavior of
the atom–field interaction in photonic crystals.

3. Conclusion

The dynamics of the spontaneous emission of an atom in a
photonic crystal with one-band isotropic band structure can
be treated by fractional calculus using either a singular or
‘cut-off smoothing’ photon DOS. For the first time to our
knowledge we show that it is a fractal phenomenon that
induces the long-time memory of spontaneous emission in the
photonic crystal. Solving the time evolving equation of the
probability amplitude for the system governed by the fractional
memory kernel described by the singular density of states, we
obtained rigorous solutions without encountering a multiple-
valued problem. Besides, we found that there is no unphysical
state of a fractionalized atomic population in the excited
state when the resonant atomic frequency lies in the allowed
band, even extremely close to the band edge. This result
was validated by the ‘cut-off smoothing DOS’ with fractional
calculus. We suggest that the correct description of the
dynamics of spontaneous emission in a photonic crystal should
be expressed in terms of fractional calculus. This mathematical
method, used here with the isotropic model, can be easily
extended to the anisotropic case and to study interesting effects

such as the enhancement of the index of refraction with greatly
reduced absorption, electromagnetically induced transparency,
and optical amplification without population inversion.
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